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Analyzing elections involves a difficult (but learnable) mixture of both ap-
plied statistics and political science knowledge. We will update this glossary
as needed so that it serves as a common reference for some of the terminology,
concepts, or vocabulary pertaining to applied statistics or political science that
we use throughout the semester. Some of these are simply points made in sec-
tion (sometimes quickly) articulated in written form for reference; others are
supplementary and serve to deepen your understanding of certain materials.

For a practical treatment of some of these concepts in R, refer to ModernDive.
If you have a specific question or are seeking more intuition, we highly recom-
mend you try searching on Cross Validated, the largest stats Q&A forum on
the web – answers are often highly specific and helpful!
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1 Variables
In election analytics, we distinguish between two different types of variables
(things that vary in the world!) – independent variables (IVs), or variables
we tend to think of as capturing different or "independent" variables in the
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real world, and dependent variables (DVs), or variables we are trying to
predict that are "dependent" on these IVs.

You’ll often hear us (the instructors) use the term independent variable inter-
changeably with the following:

• predictor

• covariate

• regressor

• explanatory variable

• input

Similarly, we use dependent variable interchangeably with the following:

• outcome

• response

• target

• output

2 MSE (Mean Squared Error)
Let’s say we want to predict a dependent variable y (ex. popular vote share),
with two independent variables, x1 (ex. GDP growth) and x2 (ex. presi-
dential approval rating). We may specify a simple linear regression model as
below:

y = α + β1x1 + β2x2

Interpretation of the parameters in the model:

• α (intercept parameter) can be interpreted as the value of y when all
the independent variables are 0. (When x1 = 0 and x2 = 0, y = α + β10 +
β20 = α)

• β1 (slope parameter) denotes how much y increases when x1 changes
by 1. Similarly, β2 indicates how much y increases when x2 changes by 1.

In R, by running lm(y ∼ x1 + x2, data = df), we can estimate the values of
α, β1, and β2. lm commands returns parameters estimates that fit our data the
best (ex. US presidential election between 1948 and 2016). These estimated
values of parameters (regression coefficients) are denoted with a hat sign: α̂,
β̂1, and β̂2.

Using these estimates, we can now predict the dependent variable only by
using our independent variables. Note that ŷ is the value of y predicted as
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such (predicted value or, when the corresponding independent variables were
already fit on, fitted value of y):

ŷ = α̂ + β̂1x1 + β̂2x2.

For the elections between 1948 and 2016, we have true value of y in our data.
So by comparing y and ŷ, we can see the in-sample predictive performance of
our model. Here, ‘sample’ is a term that refers to the data we used to fit the
model. For each observation i in 1, ..., N in our data (in our case, each election
year), we can calculate error (or residual) in the model prediction for each
data point:

errori = yi − ŷi
And to summarize the predictive power of the model, we can square the error
and get the mean error across observation.

error2i = (yi − ŷi)2

MSE =
1

N

N∑
i

error2i =
1

N

∑
(yi − ŷi)2

Why do we square the error? We do this primarily to get rid of the sign of the
error, so we treat over- and under-performance errors equally. This is what
makes it a simple summary of model performance. But sometimes it is useful
to differentiate these, in which case we might want to visualize a histogram of
the errors rather than summarise it with one number.

3 Linear Regression Model summary()
Some of you might be wondering more about what various components of the
summary of a linear regression means. For instance, here is the summary of the
regression of popular vote share on poll support for the incumbent candidate:

Call:
lm(formula = pv ~ avg_support, data = dat_poll_inc)
Residuals:

Min 1Q Median 3Q Max
-5.3613 -0.9303 0.1666 2.6013 4.1467
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 15.1876 4.8647 3.122 0.00972 **
avg_support 0.7294 0.1047 6.966 2.37e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.931 on 11 degrees of freedom
Multiple R-squared: 0.8152,Adjusted R-squared: 0.7984
F-statistic: 48.53 on 1 and 11 DF, p-value: 2.372e-05

Before we proceed, we should mention that all models, of course, will have
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error in both the data its fitted (in-sample) and the data its not fitted on (out-
of-sample).

What’s special about linear regression is an assumption that it makes on its
errors (for data point i, pvi−15.1876+(0.7294×avg_supporti)): that, altogether,
they will be distributed according to a normal (Gaussian) distribution, or
colloquially a "bell curve".

• Residuals describes the observed distribution of the errors for our sam-
ple. For example, above, we see that the smallest error between the true
popular vote and predicted popular vote within the sample is -5.3613.
The median is only 0.1666. Maybe, not so bad!

• Coefficients describe the point estimates for each of parameters (15.1876
and 0.7294 here) which are estimated (by default) using Ordinary Least
Squares (OLS). The standard error of each coefficients is the uncertainty
of our estimate given our errors – this actually comes from a nice formula
since we’re assuming normality in our errors.

• t-values tell us how far our parameter estimates are from zero, adjusting
for their standard error. Why is this called t? It turns out that since we
assume our errors are normally distributed and given how the linear
regression equation is set up, the error between our coefficient estimate
(β̂) and the true coefficient value (β) will be distributed according to a
t-distribution.

• Pr(>|t|) or the p-value tells us the probability we would observe a t-value
as high as we did if the true parameter estimate were 0. This hypothetical
scenario of the true paramter being 0 is called the null hypothesis. A
small p-value indicates that it is unlikely we will observe a relationship
between the predictor by chance alone – which means we reject this null
hypothesis.
Typically, a p-value of 5% or less is a good cut-off point. In our model
example, the p-values are very close to zero. Note the ‘Signif. codes’
associated to each estimate. Three stars (***) represent a highly signifi-
cant p-value. Consequently, a small p-value indicates that we can reject
the null hypothesis which allows us to conclude that there is a relation-
ship between avg_support and pv.

• Residual standard error (RSE) is the average distance that each true
response value yi will deviate from the regression prediction ŷi. It’s al-
most the like the square root of the MSE (see above), except instead of
dividing by N , we divide by the degrees of freedom N − k where k is
the number of parameters (2 in this case).1

1Intuitively, the degrees of freedom tells us how much of the data we’re actually using
to estimate each parameter – if it’s close to N (e.g., just one predictor) then each parameter
is drawing on a lot of data, but if it’s close to 1 (e.g., a silly model where we have a dummy
predictor for literally every data point), each parameter is being estimated with very little
data.
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• Multiple R-Squared tells us how much variation in the outcome our
selected predictors explains and Adjusted R-Squared is the former but
with a penalty if we add too many IVs that don’t help explain variation in
the outcome. See slides in the economy and poll weeks for more on these.

• F -statistic is the most conservative of tests of our model’s quality. It
compares the error of the fitted model to the error of a model with just
an intercept (called a reduced model).
The related statistical test uses our assumption of error normality to
answer the question: is our model’s error small enough to be statistically
distinct from a reduced model? If the p-value is small, then yes: if it
were not statistically distinct from a reduced model (the null hypothesis),
there’s only a tiny chance we’d see this F statistic (≈ the ratio of the
reduced model’s RSE to your model’s RSE).

In this class, we’ll mostly be focusing on the residuals as a measure of model
fit – either by plotting them or looking at the MSE.

4 Interactions
Let’s say now we want to predict popular vote share (DV), with increase in un-
employment rate and the partisanship of the incumbent president (IVs).

Now, let’s assume we expect a differential effect of unemployment rate depend-
ing on the party of the incumbent president. We can capture this differential
effect in our regression model with an interaction term as below.

(popular vote share) = α+β1(increase in unemployment) + β2(incumbent is Republican)

(1)

+β3

(
(increase in unemployment)× (incumbent is Republican)

)
(2)

To clarify, these are the independent variables in the model:

• (incumbent is Republican): a dummy variable that takes 1 if the incumbent
is Republican and 0 if the incumbent is Democrat.

• (increase in unemployment): the percentage point increase in unemployment
from the previous quarter.

To get a sense of why there’s a multiplicative term, let’s see what happens to
various inputs to our model:

• incumbent is Democrat, 0% unemployment increase:

(popular vote share) = α+β10 + β20 + β3(0 × 0).
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• incumbent is Republican, 0% unemployment increase:

(popular vote share) = α+β10+β21+β3(0 × 1).

• incumbent is Republican, 2% employment increase:

(popular vote share) = α+ β12 + β21 + β3(2 × 1).

• incumbent is Democrat, 2% employment increase:

(popular vote share) = α+ β12+β20 + β3(2 × 0).

If we squint at these examples, we can see that β1 is the effect of an increase
in unemployment for Democratic incumbents. More precisely, β1 can be inter-
preted as the predicted difference in popular vote share corresponding to 1
percentage point increase in unemployment, if (incumbent is Republican) is 0.

β2 can be interpreted as the difference in baseline popular vote share between
the Democrat and Republican incumbents when (increase in unemployment) is 0.
To see this, plug in 0 to all (increase in unemployment) into the model.

Now, it is clear that β1 + β3 is the effect of unemployment on Republican in-
cumbents’ vote share (as compared to a Democrat). β1 was the effect of unem-
ployment for Democratic incumbents. So we can interpret β3 as the additional
(potentially negative) effect of unemployment for a Republican incumbents’
vote share. β3, in other words, is the interaction term.

Thus the multiplicative term captures the interaction between party and un-
employment, or the differential or added effect of unemployment for a Repub-
lican. We can arrange the parameter interpretations corresponding to this
interaction in the following table:

incumbent is Democrat incumbent is Republican
unemployment increases by x β1x (β1 + β3)x+ β2

You can estimate all the parameters above in R by running lm(y ∼ x1 + x2
+ x1:x2, data = df) or lm(y ∼ x1*x2, data = df). Note that ‘:’ here is un-
related to the : operator used to create sequences like ‘1:10’ in R. Here, ‘:’ is
just asking the regression formula to multiply x1 and x2 and pass that value
to lm as another independent variable to the regression. We, in fact, ran the
regression for the example above in class! The results were:

parameter Estimate Std. Error t value Pr(>|t|)
(Intercept) α 49.259 0.923 53.367 <2e-16 ***
unemployment increase β1 -1.964 1.532 -1.282 0.2004
incumbent is Republican. β2 2.104 1.147 1.834 0.0673 .
incumbent is Republican : unemployment increase β3 -1.734 1.635 -1.061 0.2894
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Quiz to test your understanding:

• What is the effect of 1 percentage point increase in unemployment for
Democratic incumbents’ popular vote share?

• What is the effect of 1 percentage point increase in unemployment for
Republican incumbents’ popular vote share?

• Write down the interpretation of the third coefficient (2.104).

Answers:

• The popular vote share will decrease by 1.964 percentage point.

• The popular vote share will decrease by 3.698 percentage point.

• When unemployment does not change from the previous quarter, Repub-
lican incumbents will on average have 2.104 percentage point higher pop-
ular vote share than Democratic incumbents.

5 Ensembles
An ensemble is a collection of models that are combined in some principled
way. More colloquially, election forecasters call this a combined forecast. One
principledway is taking a simple averagewhere eachmodel is weighted equally,
or of equal importance. Another way is weight each model according to some
criteria – we usually call these weighted ensembles.

Note: this is different from a multivariate regression model! Although we can
think of estimated coefficients as "weighting" different IVs, a multivariate re-
gression is one single model (function) with one single procedure (typically
OLS) for estimating model parameters.

Weights in an ensemble can be picked according to many different criteria so
that we can exploit useful features of different models. For instance,

• We might include one model that has strong in-sample fit but less-than
optimal out-of-sample performance (from cross-validation) and another
model with weak in-sample fit, but stronger out-of-sample performance.

• Wemight include one model that uses a set of independent variables that
is available for 80 years (e.g., economic data) and anothermodel that uses
a set of independent varaibles available for 60 years (e.g., polling data).

This mix-and-match flexibility is what makes ensembles appealing!

One question youmight have: why would we want to do instead of just incorpo-
rating independent variables (IVs) together into a single multivariate model
(like multivariate linear regression)? As we know, one major feature of lin-
ear regression is its linear-ness: our model assumes that predictors x1 and x2
combine in a linear way β1x1+β2x2 to contribute to the outcome y. An artifact
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of this is that univariate models individually might have better out-of-sample
performances than a multivariate regression that combines them together in
this (unrealistic) way. Instead, we can weight the two univariate models on
their own to maximize out-of-sample performance.

Some ways that forecasters weight separately fitted models:

1. Weight a bunch of models that each have theoretical merit (PollyVote
does this)

2. Weight a bunch of models based on their in-sample performance (R2)
(Nate Silver’s 2020 forecast does this)

3. Weight a bunch of models based on some other variable that we theoret-
ically believe increases predictiveness, e.g. days left til election (if we’re
trying to weigh a poll model, this turns out to have the same effect as
doing 2)

4. Weight on a bunch of models using their cross-validation error (in statis-
tics, this technique is called "Super Learning"; this has the nice property
of never performing worse out-of-sample (on average) than any of its con-
stituent models!)

6 Probabilistic Models
A probabilistic model is a model where the outcome (DV) or predictors (IVs)
have an explicitly probabilistic interpretation – as in they can be interpreted
as random variables drawn from some probability distribution rather than de-
terministic variables with fixed values.

Consider our vanilla linear regression model:

Y = A+BX

Recall in Section 3 that we implicitly make an assumption that the errors,
yi − (Â+ B̂xi) are distributed according to a normal distribution.

In fact, this actually implies that yi itself is distributed according to a normal
distribution denoted as yi ∼ Normal(A + Bxi, σ

2), meaning that yi has mean
A+Bxi and some variance σ2 (which we can estimate from the residuals). This
technically make simple linear regression a probabilistic model. However, as
we explain in lab, this doesn’t always line up with the actual probabilistic pro-
cess in our data. It is more like this is the default probabilistic assumption
that linear regression makes which is not always right (we discuss in our lab
section on the "air war").

Instead we can choose a probabilistic model like binomial logistic regression,
which can closely model the probabilistic process we’re analyzing: turnout of
voters in an election.
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6.1 Binomial logistic regression
The vote total for any particular candidate in any election has a fixed set of
possible values: 0 − VEP, where VEP is the voter eligible population for the
election in question. Let’s say we’re interested in the popular vote total for
Democrat candidates in some state s, DemPVs. Thus, the election outcome for
Democrats in state s is some draw of voters from the voter-eligible population
(VEPs) turning out to vote Democrat. We call this process of draws from a pop-
ulation (often called successes from a number of trials) a binomial process.

6.1.1 Components of a binomial process

The core probabilistic phenomena driving a binomial process is whether or not
a single voter, denoted by i, will turn out and vote for the party in question.
Let’s call this individual voter probability in state s. Let’s denote the predicted
probability of one voter draw for the Dems as:

ps,i = Pr(VoteforDems,i)

The question we can ask is: what, then, is the probability of n voters voting
for the democratic party in this state? It turns out that there is a formula for
this probability with some intuition given below:

Pr(DemPVs = n) = pns,i︸︷︷︸
probability of
n turning out

for Dem

× (1− ps,i)VEPs−n︸ ︷︷ ︸
probability of
VEPs − n not

turning out for Dem

×
( VEPs!
n!× (VEPs − n)!

)
︸ ︷︷ ︸

to account for
interchangeable orderings

of turned out voters

As you might guess, this distribution is explicitly named the Binomial distri-
bution.

We can simulate draws from 10,000 repeated Binomial process with a popula-
tion of size VEP and a draw probability of p in R as follows:
rbinom(n = 100000, size = VEP, prob = p)

6.1.2 Modeling a binomial process

So once we have an estimate of pns,i for a particular state we can estimate a
probability distribution for DemPVs in that state. We can then predict an ex-
pected value for DemPVs, or the mean value of this probability distribution.
What’s nice is that this is guaranteed to be in the range of 0 − VEPs, since∑VEPs

n=0 Pr(DemPVs = n) = 1. Sweet!

So, how do we actually estimate pns,i? In fact, we can estimate via a regression
model ... but with a twist: we need a link function f(·) to make sure our
outputs are in range. We can model the draw probability as follows:

ps,i = Pr(VoteforDems,i) = f(α + β1x1 + β2x2 + · · ·+ βkxk)

=
exp(α + β1x1 + . . .+ βkxk)

1 + exp(α + β1x1 + . . .+ βkxk)
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Here, the link function is called the inverse logistic function (inverse logit)
which bounds values in the range (−∞,∞) to the probability range (0, 100).

Table 1 compares characteristics of linear regression with binomial logistic re-
gression, as we see in lab.

The interpretation for each coefficient βj: βj is the marginal increase in the
odds2 of a voter turning out for Dems given a unit increase in the jth predictor.

2Technically, it’s logged odds. The log(·) is needed to, again, make sure that our predicted
probability remains in the probability range and not (−∞,∞)
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Supposing we have x (a single IV), y (a DV) as a % which is computed from y = draws/vep:

Linear regression Binomial logistic regression
(binomial logit)

link function f(α + βx) = α + βx f(α + βx) = exp(α+βx)
1+exp(α+βx)

link function name identity inverse logistic function
link function output predicted outcome predicted probability of one draw

R code lm(y∼x) glm(cbind(draws, vep-draws)∼x, family=binomial)
fitting intuition "do OLS to find coefficients "find coefficients where fitted draw probabilities f(α̂+ β̂x)

that minimize
∑

(y − ŷ)2" best predict observed draws for all x"
prediction intuition "plug in xnew and get "plug in xnew and get

(i) predicted outcome (i) predicted probability of one draw, f(α̂+ β̂xnew);
ŷnew = α̂+ β̂xnew also plug in vep to get

and (ii) prediction interval (ii) predicted expected number of draws, ̂draws→ ̂draws
vep

ŷnew ± 1.96× se(ŷnew)" and (iii) predicted distribution of draws from
repeated binomial process simulations"

Table 1: Comparison of characteristics of linear regression and binomial logit.
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